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1. 

Vibrations of piezoelectric plates have been studied for a long time. In fact, in as
early as 1952, Mindlin [1] derived the two-dimensional approximate theory of
thickness and bending vibrations for piezoelectric plates. Dokmeci [2] made a
review on the main works of vibrations of piezoelectric crystals before 1980. Since
then, the research has been further broadened and deepened [3–5].

The state space method is very powerful in the study of elastic layered structures
[6]. Sosa and Castro [7] generalized the method to study the plane problem of
piezoelectric layered structures. Lee and Jiang [8] and Chen et al. [9] independently
derived the three-dimensional static state space formulae for transversely isotropic
piezoelectricity and analyzed the bending problem of piezoelectric plates.

This letter presents the non-dimensional state equations for the vibration
problem of transversely isotropic piezoelectric body. The direct expression of the
corresponding transfer matrix is given, so that the inversion of matrix is avoided
to improve the calculation efficiency. The simplified theory corresponding to the
three-generalized-variable elastic plate theory is also given. Numerical comparison
between these two theories is made by considering the free vibration of a simply
supported PZT-4 ceramic plate.

2.    

Assuming the isotropic plane is perpendicular to the z axis, one can write down
the constitutive relations of a transversely isotropic piezoelectric body as follows
[10]

sx = c11u,x + c12v,y + c13w,z + e31f,z , txz = c44(u,z +w,x )+ e15f,x ,

Dx = e15(u,z +w,x )− o11f,x , sy = c12u,x + c11v,y + c13w,z + e31f,z ,

tyz = c44(v,z +w,y )+ e15f,y , Dy = e15(v,z +w,y )− o11f,y ,

sz = c13u,x + c13v,y + c33w,z + e33f,z , txy = 1
2(c11 − c12)(u,y + v,x ),

Dz = e31(u,y + v,x )+ e33w,z − o33f,z , (1)

where u, v and w are components of displacement; si and Di are components of
stress and electric displacement respectively; f is electric potential; cij , eij and oij

are elastic, piezoelectric and dielectric constants respectively. A comma in
subscript indicates partial derivatives with respect to the followed variables. The
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governing equations can also be found in reference [10] and they can be
non-dimensionalized by introducing the following parameters, in accordance with
the geometry of the plate (Figure 1)

U= u/a, V= v/b, W=w/h, D=Dz /e33, F=f33/he33o, Z= sz /c33,

X= txz /c44, Y= tyz /c44, j= x/a, h= y/b, z= z/h, s1 = a/b, s2 = h/b,
g
G

G

F

f
t= v0t/h, v2

0 = c44/r, f1 = c11/c44, f2 = c12/c44, f3 = c13/c44, f4 = c33/c44,

f5 = e15/e33, f6 = e31/e33, f7 = o11/o33, f8 = e2
33/(o33c44)

(2)

where r is density. By generalizing the state space method in elasticity [6], one can
establish the following state equation for piezoelectricity:

1

1z
A=KA (3)

where A=[U, V, D, Z, X, Y, F, W]T and

K=$ 0
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Figure 1. The geometry of a rectangular plate.
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b1p2 + a13p2
1 + a14p2

2 a15p1p2 a16p1 a17p1

K2 =
a18p1p2 b2p2 + a19p2

1 + a20p2
2 a21p2 a22p2 (4-2)G
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a27p1 a28p2 a29 a30

where p= 1/1t, p1 = 1/1j and p2 = 1/1h, and

F
a1 = s2/s1, a2 =−a2

1f5f8, a3 =−a2
1 , a4 = s2, a5 =−a2

4f5f8, a6 =−a2
4 ,G

G a7 =−f5a1, a8 =−f5a4, a9 =−(f 2
5 f8 + f7)a3, a10 =−(f 2

5 f8 + f7)a6,G
a11 =−a1/f4, a12 =−a4/f4,G

G
a13 = a1(f 2

3 +2f6f3f8 − f 2
6 f4f8 − f1f4 − f1f8)/(f4 + f8),G

ga14 =−1
2(f1 − f2)s1s2, a15 = a13 + 1

2(f1 − f2)a1, a16 = f8a1a23, a17 = f4a1a27,
G

a18 = a15s1, a19 = a14/s3
1 , a20 = a13s1, a21 = a16s1, a22 = a17s1,G

Ga23 = a24 = (f4f6 − f3)/(f4 + f8), a26 =−a25 = a30 = f4/(f4 + f8),G
a29 = f8/(f4 + f8), a27 = a28 =−(f3 + f6f8)/(f4 + f8),G

G
b1 = s1/s2, b2 =1/s2 (5)f

Considering the following simply supported conditions,

sx =V=W=F=0 for z=0, 1 and sy =U=W=F=0 for h=0, 1

(6)

it is assumed that

U Umn (z) cos(mpj) sin(nph)

V Vmn (z) sin(mpz) cos(nph)

D Dmn (z) sin(mpz) sin(nph)

Z
= s

a

m=1

s
a
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Zmn (z) sin(mpj) sin(nph)
eiVt (7)G

G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

G
G

G

G

G

G

G

G

G

K

k

G
G

G

G

G

G

G

G

G

L

l

X Xmn (z) cos(mpj) sin(nph)

Y Ymn (z) sin(mpj) cos(nph)

F Fmn (z) sin(mpj) sin(nph)

W Wmn (z) sin(mpz) sin(nph)

where the non-dimensional frequency is defined as V=vh/v0 and v is the circular
frequency. Obviously, equation (7) identically satisfies the boundary conditions
(6). Substituting it into equation (3) gives

d
dz

Amn =KmnAmn (8)
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where Amn =[Umn , Vmn , Dmn , Zmn , Xmn , Ymn , Fmn , Wmn ]T and Kmn is an eighth order
coefficient matrix whose elements can be readily obtained from equation (4).
According to the matrix theory, the solution to equation (8) can be obtained as

Amn (z)= exp[(z+0·5)Kmn ] · Amn (−0·5) (9)

where the exponential function matrix exp[(z+0·5)Kmn ] is known as the transfer
matrix. For the sake of convenience, we will focus our discussion on matrix
exp(zKmn ) instead of this transfer matrix in the following and the results can be
easily applied to it. By virtue of the Hamilton–Cayley theorem, one can obtain

exp(zKmn )= a1(z)I+ s
7

i=1

ai+1(z)Ki
mn (10)

where I is an 8×8 unit matrix, ai (i=1, 2, . . . , 8) are relative to the eigenvalues
of matrix Kmn , of which the eigen equation is

l8 + b1l
6 + b2l

4 + b3l
2 + b4 =0 (11)

where bi (i=1, 2, . . . , 4) can be expressed by the elements of matrix Kmn . Since
equation (11) is a quadruplicate algebraic equation about l2, its eight eigenvalues
can be written as lk =−lk+4 (k=1, 2, . . . , 4). When these eigenvalues are
distinct, one can get ai as follows
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and

hk =
(elkz +e−lkz)

2dk
, gk =

(elkz −e−lkz)
2lkdk

,
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k+1 − l2
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where k=1, 2, 3, 4. It is easy to prove that ai = āi (i=1, 2, . . . , 8), i.e., all ai are
real. For equal eigenvalues, one shall solve ai in other manners [11]. For the plane
problem, the transfer matrix is 6×6 and its eigen equation is a cubic algebraic
equation about l2, see reference [7]. By looking into equations (15) and (18) of that
paper, one can find that the negative sign was missed in coefficients a3, a4. The
same error can also be found in reference [12]. Setting z=0·5 in equation (9) gives

[Umn (0·5), Vmn (0·5), 0, 0, 0, 0, Fmn (0·5), Wmn (0·5)]T

=exp(Kmn )[Umn (−0·5), Vmn (−0·5), 0, 0, 0, 0, Fmn (−0·5), Wmn (−0·5)]T. (14)

The third to the sixth equations in equations (14) yield

H1[Umn (−0·5), Vmn (−0·5), Fmn (−0·5), Wmn (−0·5)]T = {0} (15)

where H is a fourth order square matrix derived from matrix exp(Kmn ) by
eliminating the relevant columns and rows. The vanishing of the coefficient
determinant of equation (15) gives the exact frequency equation for every couple
of (m, n):

det=H1==0. (16)

3. -  

For two-dimensional analysis, assuming

u=−zcx (x, y), v=−zcy (x, y), w=w(x, y), f= g(z)f(x, y) (17)

where g(z) denotes the distribution of electric potential along the thickness.
Equation (17) corresponds to the three-generalized-variable plate theory if the
piezoelectric effect is not considered [13]. Similar to elasticity, we can derive the
governing equations as follows:

Rk1cx,xx +Rc66cx,yy +(Rk2 +Rc66)cy,xy + c44h(w,x −cx )+ e15khf,x − rRcx,tt =0

(Rk2 +Rc66)cx,xy +Rc66cy,xx +Rk1cy,yy + c44h(w,y −cy )+ e15khf,y − rRcy,tt =0
g
G

G

G

G

F

f

c44h92w+ e15kh92f− c44h(cx,x +cy,y )− rhw,tt =0

e15h92w− o11kh92f− e15h(cx,x +cy,y )=0 (18)

where

k=(1/h) g
h/2

−h/2

g(z) dz, R= h3/12, 92 = 12/1x2 + 12/1y2

and

k1 = c11 − (ac13 + be31)/g, k2 = c12 − (ac13 + be31)/g,

a= c13o33 + e31e33, b= c13e33 − c33e31, g= e2
33 + o33c33. (19)
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For simply supported rectangular plate, analogy to the three-dimensional analysis,
by expanding the unknown functions cx , cy , w and f in terms of trigonometric
series, a system of four linear algebraic homogeneous equations can be derived
from equation (18), which gives the corresponding two-dimensional frequency
equation as follows:

det=H2==0. (20)

For the sake of simplicity, the elements in H2 are not given here.

4.  

Consider the free vibration of a PZT-4 ceramic plate, whose material constants
can be found in reference [14]. Frequency equation (16) corresponds to
three-dimensional theory so that for every couple of (m, n), one can get an
arbitrary number of the non-dimensional frequency V. On the other hand,
equation (20) corresponds to the two-dimensional plate theory, which is finally
shown to be a cubic algebraic equation about V2, so that at most only three real
frequencies can be obtained. Because the smallest frequency is the most important
in general engineering consideration, we will thus pay attention to it in what
follows. Figures 2 and 3 display the curves of the smallest non-dimensional
frequency V versus thickness-to-span ratio s2 for a rectangular plate, whose
length-to-width ratio is chosen to be 2. In both figures, the solid lines correspond
to three-dimensional theory while the dotted ones to the two-dimensional theory.

It can be seen from the figures that the non-dimensional frequency V increases
as the thickness-to-span ratio increases. A comparison shows that the
non-dimensional V calculated by the two-dimensional plate theory is always larger
than the corresponding one by three-dimensional theory. It can also be seen that
the two-dimensional curve deviates gradually from the corresponding three-
dimensional one with the increase of the thickness-to-span ratio. These facts are

Figure 2. Non-dimensional frequencies for rectangular plates (s1 =0·5, m=1).



1

2

3

4

5

6

7

8

9

10

n = 1

n = 2

n = 3

0 0.1 0.2 0.3 0.4 0.5 0.6

s2

    747

Figure 3. Non-dimensional frequencies for rectangular plates (s1 =0·5, m=2).

in fact identical with those of the elastic plate. For a square plate there must be
no difference between x and y directions. Though numerical results are not
presented, it has actually been proved in our calculations.

5. 

This letter derived the non-dimensional state equation of a transversely isotropic
piezoelectric body. The direct expression of the transfer matrix was derived so that
the inversion of matrix is avoided. The free vibration of a simply supported
rectangular plate was therefore analyzed. The two-dimensional analysis was also
presented. It is worth mentioning here that the state space method can also be
applied to analyze bending and stability problems of laminated plates.
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